The Lebesgue Constants for Cardinal Spline Interpolation*

FRANKLIN RICHARDS

Mathematics Research Center, University of Wisconsin, Madison, Wisconsin

Communicated by I. J. Schoenberg

If $(y_v) \in l_{\infty}$, let $\mathcal{L}_n y$ be the unique bounded cardinal spline of degree n-1 interpolating to y at the integers, i.e.,

$$\mathcal{L}_{\nu} \nu(\nu) = \nu_{\nu}, \nu = 0, \pm 1, \pm 2.$$

The norm of this operator: $\|\mathscr{L}_n\| = \sup \|\mathscr{L}_n y\| \|y\|$ is called a Lebesgue constant. A formula for $\|\mathscr{L}_n\|$ is obtained, and with it we will show that

$$\|\mathscr{L}_n\| = \frac{2}{\pi} \log n + \frac{2}{\pi} \left(2 \log \frac{4}{\pi} + \gamma \right) + o(1) \text{ as } n \to \infty$$

where γ is the Euler-Mascheroni constant.

1. Introduction

If n is a natural number, let us define the space $\mathcal{S}_n = \{S(x)\}$ of bounded cardinal splines of degree n-1 to consist of those functions satisfying the following conditions:

- (i) $S \in C^{n-2}(-\infty, \infty)$,
- (ii) $||S|| = \sup_{x \in \mathbb{R}^m} |S(x)| < \infty$,
- (iii) S(x) reduces to a polynomial of degree at most n-1 on each of the intervals $[\nu + n/2, \nu + n/2 + 1]$, $\nu = 0, \pm 1, \pm 2,...$, i.e., S(x) has knots at the integers or half integers if n is, respectively, even or odd.

If $y = (y_{\nu})_{\nu=-\infty}^{\infty} \in I_{\infty}$, the space of (real or complex) doubly infinite bounded sequences, then there is a unique element $\mathcal{L}_n y \in \mathcal{S}_n$ interpolating the given data at the integers, i.e.,

$$\mathscr{L}_n y(\nu) = y_{\nu}, \quad \nu = 0, \pm 1, \pm 2, \dots$$

^{*} Sponsored by the United States Army under Contract No. DA-31-124-ARO-D-462.

The operator $\mathcal{L}_n: I_\infty \to \mathcal{L}_n$ is called the cardinal spline interpolation operator of order n, and its norm

$$\|\mathscr{L}_n\| = \sup_{y \parallel_{n} = 1} \|\mathscr{L}_n y\|,$$

is referred to as the nth Lebesgue constant for cardinal spline interpolation. These numbers have been investigated previously for low values of n (see [2, 6–8]). The purpose of this paper is to examine the asymptotic behavior of the Lebesgue constants as the degree becomes large. More specifically, the following result is obtained.

Theorem 1. Let γ be the Euler-Mascheroni constant. Then

$$\lim_{n \to \infty} \left\{ \| \mathcal{L}_n \| - \frac{2}{\pi} \log n \right\} = \frac{2}{\pi} \left(2 \log \frac{4}{\pi} + \gamma \right) = 0.675.... \tag{1.1}$$

It seems of interest to compare this with results obtained for polynomial interpolation operators. Let

$$\Delta_n : -1 \leqslant x_n^n < x_{n-1}^n < \dots < x_1^n \leqslant 1, \quad n = 1, 2, \dots,$$
 (1.2)

be a given infinite triangular array, and for each $f \in C[-1, 1]$, let $\mathcal{P}_{\Delta_n} f$ denote the unique polynomial of degree less than n satisfying

$$\mathscr{P}_{\Delta_n} f(x_{\nu}^n) = f(x_{\nu}^n), \qquad \nu = 1, ..., n.$$

Erdös [1] has shown that there exists a constant c independent of the array (1.2) such that

$$||\mathcal{P}_{\Delta_n}|| \geqslant (2/\pi) \log n - c. \tag{1.3}$$

On the other hand, if

$$\bar{\Delta}_n: x_{\nu}^n = \cos\frac{(2\nu - 1)\pi}{2n}, \quad \nu = 1, 2, ..., n,$$

are the zeros of the nth Chebyshev polynomial, Rivlin [3] has shown that

$$\lim_{n \to \infty} \left\{ \| \mathscr{P}_{\bar{\Delta}_n} \| - \frac{2}{\pi} \log n \right\} = \frac{2}{\pi} \left(\log \frac{8}{\pi} + \gamma \right) = 0.9625.... \tag{1.4}$$

Hence we make the surprising observation that "near-best" polynomial interpolation Lebesgue constants display nearly the same asymptotic behavior as cardinal spline interpolation Lebesgue constants.

2. A FORMULA FOR $\|\mathscr{L}_n\|$.

We now discuss certain functions and concepts that will play a major role in our discussion. Define

$$\psi_n(t) = \left(\frac{2\sin t/2}{t}\right)^n \tag{2.1}$$

and

$$\varphi_n(t) = \sum_{j=-\infty}^{\infty} \psi_n(t+2\pi j). \tag{2.2}$$

Then the Fourier transform of $\psi_n(t)/\varphi_n(t)$ is

$$L_n(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\psi_n(t)}{\varphi_n(t)} e^{itx} dt, \qquad (2.3)$$

which is characterized by the properties (see [4])

(i) $L_n \in \mathcal{S}_n$,

(ii)
$$L_n(\nu) = \begin{cases} 1, & \nu = 0, \\ 0, & \nu = +1, +2, \dots, \end{cases}$$

(iii)
$$|L_n(x)| \to 0$$
 exponentially as $|x| \to \infty$,

i.e., $L_n(x)$ is the "fundamental" cardinal spline of degree n-1. Thus

$$(\mathscr{L}_n y)(x) = \sum_{\nu = -\infty}^{\infty} y_{\nu} L_n(x - \nu) \qquad -\infty < x < \infty.$$
 (2.4)

Since

$$|\mathscr{L}_n y(x)| \leqslant ||y||_{\infty} \sum_{r=-\infty}^{\infty} |L_n(x-\nu)|$$

and $\sum_{\nu=-\infty}^{\infty} |L_n(x-\nu)|$ has period 1, it is clear that

$$\|\mathscr{L}_n\| \leqslant \max_{0 \leqslant x \leqslant 1} \sum_{\nu=-\infty}^{\infty} |L_n(x-\nu)|.$$

On the other hand, if we assume $n \ge 3$ and consider the sequence

$$\tilde{y}_{\nu} = \operatorname{sgn} L_{n}(x - v) = \begin{cases} (-1)^{\nu+1}, & \nu = 1, 2, ..., \\ (-1)^{\nu}, & \nu = 0, -1, -2, ..., \end{cases} \quad 0 < x < 1. \quad (2.5)$$

then

$$\|\mathscr{L}_n \tilde{y}\| = \sup_{-\infty < x < \infty} \sum_{\nu = -\infty}^{\infty} \tilde{y}_{\nu} L_n(x - \nu) = \max_{0 \le x \le 1} \sum_{\nu = -\infty}^{\infty} |L_n(x - \nu)| \quad (2.6)$$

and the maximum occurs at $x = \frac{1}{2}$ (see [2]). Thus

$$\|\mathcal{L}_n\|_1 = \sum_{\nu=-\infty}^{\infty} \tilde{y}_{\nu} L_n(\frac{1}{2} - \nu). \tag{2.7}$$

The following theorem gives a more useful formula for $\parallel \mathscr{L}_n \parallel$

THEOREM 2. Define the function,

$$\gamma_n(t) = \sum_{j=-\infty}^{\infty} (-1)^j \, \psi_n(t + 2\pi j). \tag{2.8}$$

Then if $n \ge 3$, we have

$$\|\mathcal{L}_n\| = \frac{1}{\pi} \int_0^{\pi} \frac{\gamma_n(t)}{\varphi_n(t)} \sec \frac{t}{2} dt.$$
 (2.9)

Proof. By (2.3),

$$\sum_{\nu=-N+1}^{N} \hat{y}_{\nu} L_{n} \left(\frac{1}{2} - \nu \right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \frac{\psi_{n}(t)}{\varphi_{n}(t)} e^{it/2} \sum_{\nu=-N+1}^{N} \hat{y}_{\nu} e^{-it\nu} \right\} dt. \quad (2.10)$$

But

$$\sum_{v=-N+1}^{N} \tilde{y}_{v} e^{-itv} = -\sum_{v=1}^{N} (-e^{-it})^{v} + \sum_{v=0}^{N-1} (-e^{it})^{v}$$

are just geometric series. An easy calculation yields

$$\sum_{v=-N+1}^{N} \tilde{y}_{v} e^{-itv} = \frac{2}{1 + e^{it}} (1 + (-1)^{N+1} \cos Nt).$$
 (2.11)

Plugging into (2.10) we obtain

$$\sum_{v=-N+1}^{N} \tilde{y}_{v} L_{n} \left(\frac{1}{2} - \nu\right)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\psi_{n}(t)}{\varphi_{n}(t)} \sec \frac{t}{2} (1 + (-1)^{N+1} \cos Nt) dt$$

$$= \frac{1}{2\pi} \sum_{j=-\infty}^{\infty} \int_{2\pi j - \pi}^{2\pi j + \pi} \frac{\psi_{n}(t)}{\varphi_{n}(t)} \sec \frac{t}{2} (1 + (-1)^{N+1} \cos Nt) dt$$

$$= \frac{1}{2\pi} \sum_{j=-\infty}^{\infty} \int_{-\pi}^{\pi} \frac{(-1)^{j} \psi_{n}(t + 2\pi j)}{\varphi_{n}(t)} \sec \frac{t}{2} (1 + (-1)^{N+1} \cos Nt) dt,$$
(2.12)

by the periodicity of $\varphi_n(t)$ and the fact that $\sec((t+2\pi j)/2) = (-1)^j \sec t/2$. But since $\gamma_n(t) = \sum_{j=-\infty}^{\infty} (-1)^j \psi_n(t+2\pi j)$ converges uniformly and the resulting integrand is an even function, it follows that

$$\sum_{\nu=-N+1}^{N} \tilde{y}_{\nu} L_{n} \left(\frac{1}{2} - \nu \right)$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{\gamma_{n}(t)}{\varphi_{n}(t)} \sec \frac{t}{2} dt + \frac{(-1)^{N+1}}{2\pi} \int_{-\pi}^{\pi} \frac{\gamma_{n}(t)}{\varphi_{n}(t)} \sec \frac{t}{2} \cos Nt \, dt. \quad (2.13)$$

It will be shown in the next section that $[\gamma_n(t)/\varphi_n(t)]$ sec t/2 is continuous on $[-\pi, \pi]$. Hence letting $N \to \infty$ in (2.13), the second term on the right will $\to 0$ by the Riemann-Lebesgue lemma, and the term on the left will $\to \|\mathscr{L}_n\|$ by (2.7). This proves (2.9).

3. The Functions $\varphi_n(t)$ and $\gamma_n(t)$

In order to use formula (2.9) to prove Theorem 1, it will be necessary to simplify the integrand. Thus we must examine in more detail the functions $\varphi_n(t)$ and $\gamma_n(t)$. Consider the functions

$$\rho_n(t) = \left(2 \sin \frac{t}{2}\right)^n \sum_{j=-\infty}^{\infty} \frac{1}{(t + 2\pi j)^n}$$
 (3.1)

and

$$\sigma_n(t) = \left(2 \sin \frac{t}{2}\right)^n \sum_{j=-\infty}^{\infty} \frac{(-1)^j}{(t+2\pi j)^n}.$$
 (3.2)

Then

$$\varphi_n(t) = \left(2 \sin \frac{t}{2}\right)^n \sum_{i=-n}^{\infty} \frac{(-1)^{jn}}{(t+2\pi j)^n} = \begin{cases} \rho_n(t) & n \text{ even,} \\ \sigma_n(t) & n \text{ odd,} \end{cases}$$
(3.3)

and

$$\gamma_n(t) = \left(2\sin\frac{t}{2}\right)^n \sum_{i=-\infty}^{\infty} \frac{(-1)^{j(n+1)}}{(t+2\pi j)^n} = \begin{cases} \sigma_n(t) & n \text{ even,} \\ \rho_n(t) & n \text{ odd.} \end{cases}$$
(3.4)

Schoenberg [4, 5] has shown that $\rho_n(t)$ and $\sigma_n(t)$ are trigonometric polynomials in the variable t/2 and that $\varphi_n(t) > 0$, $-\infty < t < \infty$. From (3.4) it follows that $\gamma_n(t) > 0$, $-\pi < t < \pi$, and $\gamma_n(\pi) = \gamma_n(-\pi) = 0$. Thus $[\gamma_n(t)/\varphi_n(t)]$ sec t/2 is indeed a continuous, nonnegative function on $[-\pi, \pi]$, as claimed in §2.

The following lemma states that it is "all right" to replace the functions $\gamma_n(t)$ and $\varphi_n(t)$ in (2.9) by their "dominant" terms.

LEMMA 1. If $n \geqslant 3$ and $0 < t < \pi$, then

$$\left| \frac{\varphi_n(t)}{\psi_n(t) + \psi_n(t - 2\pi)} - 1 \right| < 3^{-n-1} \tag{3.5}$$

and

$$\left| \frac{\gamma_n(t)}{\psi_n(t) - \psi_n(t - 2\pi)} - 1 \right| < 2^{-n}.$$
 (3.6)

Proof. Consider the functions

$$\tilde{\varphi}_{n}(u) = \sum_{j=-\infty}^{\infty} \frac{(-1)^{jn}}{(u+j)^{n}}$$

$$= \frac{1}{u^{n}} + \frac{1}{(1-u)^{n}} + \sum_{j=1}^{\infty} (-1)^{jn} \left[\frac{1}{(j+u)^{n}} + \frac{1}{(j+1-u)^{n}} \right]$$
(3.7)

and

$$\tilde{\gamma}_{n}(u) = \sum_{j=-\infty}^{\infty} \frac{(-1)^{j(n+1)}}{(u+j)^{n}}$$

$$= \frac{1}{u^{n}} - \frac{1}{(1-u)^{n}} + \sum_{j=1}^{\infty} (-1)^{j(n+1)} \left[\frac{1}{(j+u)^{n}} - \frac{1}{(j+1-u)^{n}} \right]$$
(3.8)

By (3.3) and (3.4), it is seen that

$$\sup_{0 < t < \pi} \left| \frac{\varphi_n(t)}{\psi_n(t) + \psi_n(t - 2\pi)} - 1 \right| = \sup_{0 < u < \frac{1}{2}} \left| \frac{\tilde{\varphi}_n(u)}{1/u^n + 1/(1 - u)^n} - 1 \right|$$

and

$$\sup_{0 < t < \pi} \left| \frac{\gamma_n(t)}{\psi_n(t) - \psi_n(t - 2\pi)} - 1 \right| = \sup_{0 < u < \frac{1}{2}} \left| \frac{\tilde{\gamma}_n(u)}{1/u^n - 1/(1 - u)^n} - 1 \right|.$$

The fact that $0 < u < \frac{1}{2}$ will be used repeatedly. We compute

$$\left|\frac{\widetilde{\varphi}_{n}(u)}{1/u^{n}-(1/(1-u)^{n})}-1\right| \leq \frac{\sum_{j=1}^{\infty}\left[1/(j+u)^{n}+1/(j+1-u)^{n}\right]}{1/u^{n}+1/(1-u)^{n}}$$

$$\leq \frac{\sum_{j=1}^{\infty}\left(u/(j+u)\right)^{n}+\left(u/(j+1-u)\right)^{n}}{1+\left(u/(1-u)\right)^{n}}$$

$$\leq 2\sum_{j=1}^{\infty}\left(2j+1\right)^{-n} \leq 3^{-n+1} \quad \text{for} \quad n \geq 3.$$

Thus (3.5) is proved. From (3.8) we have

$$\left|\frac{\tilde{\gamma}_n(u)}{1/u^n-1/(1-u)^n}-1\right|\leqslant \sum_{i=1}^{\infty}\alpha_i(u,n),$$

where

$$0 \leqslant \alpha_j(u,n) = \frac{1/(j+u)^n - 1/(j+1-u)^n}{1/u^n - 1/(1-u)^n}.$$

It follows easily that

$$\alpha_j(u,n) \leqslant \frac{u^n[(j+1-u)^n-(j+u)^n]}{(j+u)^n(j+1-u)^n(1-u^2/(1-u)^2)},$$

and since

$$\frac{(j+1-u)^n-(j+u)^n}{1-2u}$$

$$=\sum_{i=0}^{n-1}(j+1-u)^{n-1-i}(j+u)^i \leqslant n(j+1-u)^{n-1},$$

we get

$$\alpha_{j}(u, n) \leqslant \frac{u^{n}(1-u)^{2} n}{(j+u)^{n} (j+1-u)} \leqslant n \left(\frac{u}{j+u}\right)^{n} \frac{1}{(j+1-u)^{n}}$$

$$\leqslant \frac{2n}{(2j+1)^{n+1}}.$$

Therefore,

$$\sum_{j=1}^{\infty} \alpha_j(u,n) \leqslant 2n \cdot 3^{-n-1} + 3^{-n} < 2^{-n}, \quad \text{for} \quad n \geqslant 3.$$

This establishes (3.6).

Let

$$R_n(t) = \frac{\gamma_n(t)[\psi_n(t) + \psi_n(t - 2\pi)]}{\varphi_n(t)[\psi_n(t) - \psi_n(t - 2\pi)]}, \quad 0 < t < \pi.$$
 (3.9)

An immediate consequence of Lemma 1 and (2.9) is

LEMMA 2. If $n \ge 3$, there exists a point $\xi_n \in [0, \pi]$ such that

$$\|\mathscr{L}_n\| = \frac{R_n(\xi_n)}{\pi} \int_0^\pi \frac{(2\pi - t)^n - t^n}{(2\pi - t)^n + t^n} \sec \frac{t}{2} dt$$
 (3.10)

and

$$|R_n(\xi_n) - 1| < 2^{-n+2}.$$
 (3.11)

Thus if the sequence

$$\|\mathscr{L}_n\|^* = \frac{1}{\pi} \int_0^{\pi} \frac{(2\pi - t)^n - t^n}{(2\pi - t)^n + t^n} \sec \frac{t}{2} dt, \qquad n = 3, 4, ...,$$
 (3.12)

is $o(2^n)$, then

$$\|\mathscr{L}_n\|^* - \|\mathscr{L}_n\| \to 0$$
, as $n \to \infty$.

4. Proof of Theorem 1

Formula (3.12) will now be used to prove Theorem 1. Since

$$\sec\frac{t}{2} = \frac{2}{\pi - t} + h(t), \qquad 0 < t < \pi,$$

where $h(t) \in C[0, \pi]$, (3.12) gives us

$$\|\mathscr{L}_n\|^* = \frac{2}{\pi} \int_0^\pi \frac{(2\pi - t)^n - t^n}{(2\pi - t)^n + t^n} \frac{dt}{\pi - t} + \frac{1}{\pi} \int_0^\pi \frac{(2\pi - t)^n - t^n}{(2\pi - t)^n + t^n} h(t) dt$$

$$= A_n + B_n. \tag{4.1}$$

The second integrand remains bounded and converges a.e. to h(t) as $n \to \infty$. Thus by bounded convergence,

$$\lim_{n \to \infty} B_n = \frac{1}{\pi} \int_0^{\pi} h(t) \, dt = \frac{2}{\pi} \log \frac{4}{\pi} \,. \tag{4.2}$$

Dividing the numerator and denominator of the first integrand in (4.1) by t^n and making the change of variables $t \to x = 2\pi/t - 1$ we obtain

$$A_n = \frac{4}{\pi} \int_1^\infty \frac{(x^n - 1)}{(x^n + 1)} \frac{dx}{(x^2 - 1)} \,. \tag{4.3}$$

Assume for the time being that n is even, i.e., n = 2m. Then

$$A_{2m} = \frac{4}{\pi} \int_{1}^{\infty} \frac{x^{2m-2} + x^{2m-4} + \dots + 1}{x^{2m-1}} dx.$$

Since $\int_0^1 = \int_1^\infty$ and the integrand is even, one gets

$$A_{2m} = \sum_{n=1}^{m} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x^{2m-2\nu}}{x^{2m-1}} dx.$$
 (4.4)

Each of these integrals may be evaluated by complex integration as follows. Let R > 1 and consider the contour proceeding from z = -R to z = R along the real axis, and then back to z = -R along the upper half of a circle of radius R centered at the origin. The integrands

$$z^{2m-2\nu}/(z^{2m}+1), \qquad \nu = 1, 2, ..., m$$

have only simple poles inside the contour at the points

$$z_r = e^{\pi i(2r-1)/2m}, \qquad r = 1, 2, ..., m$$

and corresponding residues

$$\frac{z_r^{1-2\nu}}{2m} = \frac{1}{2m} e^{-\pi i(2r-1)(2\nu-1)/2m}.$$

Summing and letting $R \to \infty$ we see that

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x^{2m-2\nu}}{x^{2m}+1} \, dx = \frac{1}{m \sin((\pi/2m)(2\nu-1))}.$$
 (4.5)

Hence A_{2m} is a Riemann sum for the divergent integral $(1/\pi) \int_0^{\pi} \csc x \, dx$.

Now $\csc x - 1/x - 1/(\pi - x)$ is a continuous and hence Riemann integrable function on $[0, \pi]$ and

$$\int_0^{\pi} \left(\csc x - \frac{1}{x} - \frac{1}{\pi - x} \right) dx = 2 \log \frac{2}{\pi}. \tag{4.6}$$

Using (4.4) and (4.5) and replacing the resulting Riemann sum by means of (4.6) we have

$$A_{2m} = \frac{2}{m} \sum_{\nu=1}^{m} \frac{2m}{\pi(2\nu - 1)} + \frac{2}{\pi} \log \frac{2}{\pi} + o(1)$$

$$= \frac{4}{\pi} \left\{ \sum_{\nu=1}^{2m} \frac{1}{\nu} - \frac{1}{2} \sum_{\nu=1}^{m} \frac{1}{\nu} \right\} + \frac{2}{\pi} \log \frac{2}{\pi} + o(1)$$

$$= \frac{2}{\pi} \log 2m + \frac{2}{\pi} \left(\log \frac{4}{\pi} + 2\gamma_{2m} - \gamma_{m} \right) + o(1). \tag{4.7}$$

Here

$$\gamma_n = \sum_{\nu=1}^n \frac{1}{\nu} - \log n, \quad n = 1, 2, ...,$$

and $\gamma_n \to \gamma$, the Euler-Mascheroni constant. Now observe that the integrand

of (4.3) is an *increasing* function of n, and hence $A_{n+1} > A_n$. Thus the estimate (4.7) is valid for all $n \ge 3$. Using (4.1) we obtain

$$\|\mathscr{L}_n\|^* = \frac{2}{\pi} \log n + \frac{2}{\pi} \left(2 \log \frac{4}{\pi} + \gamma \right) + o(1).$$
 (4.8)

After considering the remark at the end of the last section, we see that we may replace $\|\mathscr{L}_n\|^*$ by $\|\mathscr{L}_n\|$ in (4.8). This concludes the proof of Theorem 1. In concluding the paper, we state without proof a result concerning the

monotonicity of the sequence $||\mathcal{L}_n||, n = 1, 2, ...$

THEOREM 3.

$$1=\|\mathscr{L}_1\|=\|\mathscr{L}_2\|<\|\mathscr{L}_3\|<\|\mathscr{L}_4\|<\cdots.$$

ACKNOWLEDGMENTS

The author gratefully acknowledges many helpful discussions with Professors Carl de Boor and Martin Marsden which significantly affected the final form of this paper.

REFERENCES

- P. Erdös, Problems and results on the theory of interpolation II, Acta Math. Acad. Sci. Hung. 12 (1961), 235–244.
- F. RICHARDS, Best bounds for the uniform periodic spline interpolation operator, J. Approximation Theory 7 (1973), 302–317.
- T. J. RIVLIN, The Lebesgue constants for polynomial interpolation, IBM Research Report RC 4165, Yorktown Heights, NY, 1972.
- 4. I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, *Quart. Appl. Math.* 4 (1946), 45–99, 112–141.
- J. SCHOENBERG, Cardinal interpolation and spline functions, J. Approximation Theory 2 (1969), 167–206.
- F. SCHURER, A note on interpolating periodic quintic splines with equally spaced nodes, J. Approximation Theory 1 (1968), 493–500.
- F. SCHURER, On interpolating periodic quintic spline functions with equally spaced nodes, Tech. Univ. Eindhoven Report 69-WSK-01, Eindhoven, The Netherlands, 1969.
- 8. F. Schurer and E. W. Cheney, On interpolating cubic splines with equally spaced nodes, *Indag. Math.* **30** (1968), 517-524.