JOURNAL OF APPROXIMATION THEORY 14, 83-92 (1975)

The Lebesgue Constants for Cardinal Spline Interpolation™
FRANKLIN RICHARDS

Mathematics Research Center, University of Wisconsin, Madison, Wisconsin

Communicated by I. J. Schoenberg

If (»,)elw, let £,y be the unique bounded cardinal spline of degree » — 1
interpolating to y at the integers, i.e.,

Lo yv) =y, ,v =0, £1, £2.

The norm of this operator: || 2, || = sup|| £,y |;li ¥ is called a Lebesgue con-
stant. A formula for || Z, || is obtained, and with it we will show that

2 2 4
T e —loga + —(2 log — + y) +o(l) as n— w0
ka m ks

where vy is the Euler—Mascheroni constant.

1. INTRODUCTION

If n 1s a natural number, let us define the space .7, = {S(x)} of bounded
cardinal splines of degree n — 1 to consist of those functions satisfying the
following conditions:

(i) SeCri(—ow, ),
(i) [ Si|=__sup S < cc,
(i)  S(x) reduces to a polynomial of degree at most n — 1 on each of

the intervals [v ++ n/2, v + n/2 + 1], v == 0, -1, 42,..., i.e., S(x) has knots
at the integers or half integers if # is, respectively, even or odd.

Ify = (y)_,€l.,thespace of (real or complex) doubly infinite bounded
sequences, then there is a unique element %, y € ., interpolating the given
data at the integers, i.e.,

"(l)ny(v) == ,yy ) Vv = O’ ltla :{:25"- .
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The operator %, [, — ¢, 1s called the cardinal spline interpolation operator
of order n, and its norm

Lyl = sup Ly

yilgel

is referred to as the nth Lebesgue constant tor cardinal spline interpolation.
These numbers have been investigated previously for low values of n (see
[2, 6-8]). The purpose of this paper is to examine the asymptotic behavior
of the Lebesgue constants as the degree becomes large. More specifically,
the following result is obtained.

THEOREM 1. Let v be the Euler—Mascheroni constant. Then

. 2 2 : o
lim 2;1 Lyl —logn = = (2 log—} +y) = 0.675... (1.1)

It seems of interest to compare this with results obtained for polynomial
interpolation operators. Let

. w oy Ty RPN SR
An- Sl SRR Npeop 7 RIS 1

no= 1,2, (1.2)

be a given infinite triangular array, and for each fe C[—L, 1], let &, f
denote the unique polynomial of degree less than n satisfying

!/idnf(x"h) :‘f('\‘."“)v Vo= 1.‘..... i,

Erdos [1] has shown that there exists a constant ¢ independent of the array
{1.2) such that

/_] o (27T) ]Og e O (] 3)

"

On the other hand, if

A, x," = cos Qv — b=
n o+ -ty 2[1 .

are the zeros of the nth Chebyshev polynomial, Rivlin [3] has shown that

. , 2 :
Iim ;H Prh - 2 log nl == (10g L y) = 0.9625.... (1.4)
n T \ a \ T 3

n o

Hence we make the surprising observation that “near-best™ polynomial
interpolation Lebesgue constants display nearly the same asymptotic
behavior as cardinal spline interpolation Lebesgue constants.



CARDINAL SPLINE INTERPOLATION 85
2. A FORMULA FOR || .2, |

We now discuss certain functions and concepts that will play a major role
in our discussion. Define

_(2sint/2\"
) = (1) @1
and
@ult) = 3, it + 27)). (2.2)
j=—c0
Then the Fourier transform of ,(¢)/¢,(f) is
NI T A () R
L(x) = 5 ‘_ NORAG (2.3)
which is characterized by the properties (see [4])
() L,e,
.. L, v =0,
@ L= = 11, 1,
(iity | Ly(x)} — 0 exponentially as |[x' — oo,
i.e., L,{x)is the “fundamental” cardinal spline of degree n — 1. Thus
(L)) = Y nLadx —»)  —o <x < o0, (2.4)

r=—

Since

o5

[ L)) Lyl 2 Lalx — w)l

VE=—a0

and Y, _, | L.(x — »)! has period 1, it is clear that

E]

P #H e max PL(x — ).
n o < 0»;,‘?«’1 rzz;,[ i [Iz(l 1’)‘

On the other hand, if we assume n == 3 and consider the sequence

(=1t v=1,2,.,

—1). v =0, —1, —2..., O0-<x <=1, (2.5

Voo=sgn Ly — ) =

then

pal

N A 5 )= 7 3 ! — p)!
[ = sup Y BLu(x— ) ,max Y O lL(x =) (2.6)

v=-- )
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and the maximum occurs at x == ¢ (see [2]). Thus

\‘ “(!;1 } = \2; j"ul‘rL(‘L - V)~

Voot

The following theorem gives a more usetul formula for jj %, |.

THEOREM 2.  Define the function,
yult) = 2, (=1 shalt + 2m)).

Then if n == 3, we have

4 Lmodt)
= — ‘0 0 seczdt

N . N .
S A : b vl (t) o, L
Y al, (2 — V) =5 I%;l eitr N }',,e"”V(v dt.
peNTT : 2 L, (1) e N41 )
But
N N N1
Z ‘fyve*ill' — Z (me-»u,)u 4+ Z (_(.it)v
p=—N-=1 re=l v==A)

are just geometric series. An easy calculation yields
N

5
Z et = —m}eTt“ 4 (__l)N‘_—l cos Nt).

r=—N:1

Plugging into (2.10) we obtain

N ]

V:;”l_fuLn (E - )

27 £ T?z(r)

e “2-]; z (mm %‘%2 sec ; (1 -+ (— 1M+ cos Nt) dt
Jmmep Y 2mi—T n

L D) o L (v cos Ny i

LS 2

G T (pn(t)

(2.8)

(2.10)

(2.11)

sec % (1 -- (—1)¥™ cos Nr) dt,

(2.12)
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by the periodicity of ¢,{¢) and the fact that sec({z -+ 277)/2) = {—1) sec ¢/2.
But since v,(t) = ¥, . (—1) #,(t -+ 27j) converges uniformly and the
resulting integrand is an even function, it follows that

N

. 1
X ()

L)) oL DM o)
= J o) 5 dt+ 5 {W D) 5 LGSNl‘d{ (2.13)

It will be shown in the next section that [y, (¢)/@,(¢)] sec ¢/2 is continuous on
[, 7]. Hence letting N — oo in (2.13), the second term on the right will
—> 0 by the Riemann-Lebesgue lemma, and the term on the left will — || &£, 1|
by (2.7). This proves (2.9).

3. THE FUNCTIONS @,(f) AND y,(1)

In order to use formula (2.9) to prove Theorem 1, it will be necessary to
simplify the integrand. Thus we must examine in more detail the functions
(1) and y,(t). Consider the functions

pult) = (25in 5) " Z '(}T"z . G.1)

and
=53] 5 g (3:2)

Then
0= (s 3)" 3 G = e, O

and
ro=loan ) EU= il o

Schoenberg [4 5] has shown that pn(t) and aﬁ(t) are trigonometric

(3 4} it follows that v, () > 0 I | < 7, and yﬂ(w) = yn(mn) = Q.
Thus {y.(t)/e.()] sec /2 is indeed a continuous, nonnegative function on
[, 7], as claimed in §2.

The following lemma states that it is “all right” to replace the functions
v () and @,(¢) in (2.9) by their “dominant” terms.
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LemMa 1. Ifn = 3and 0 < t < r, then

I (Pn(t) i -7 Qb
| GRS S Rt )
and
'yn(t) [

Proof. Consider the functions

x A_Ijn
0= L

Jm—w

1 i

1
e e RO g g ] 60
and
. B x (_])i(n+l)
yn(u) = j:zim (u - /)n
1 ! ! S J(n41 1 _ I
ZF—W*%(‘”( v [(j+ W (1T — e ](3 5
By (3.3) and (3.4), it is seen that
q)n(t) ] ‘ . (p"(ll) — 1 |
o | Pult) T Palt — 27) o2, ‘ T =11 = wy" |
and
')’n(t) | 7 o ?n(”) .
R e =l B N BTt e

The fact that 0 < u < § will be used repeatedly. We compute

0 oSG e G ) - ]
Vur = (11 — w)®) ’ o 1wt + 11 — w)r

Zy 2 @G+ (4 —u)n
T+ /(1 — )

2

Fﬂq

2+ D3 for n > 3.

-1

it

J
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Thus (3.5) is proved. From (3.8) we have

');n(u) - it /
u — 1)1 —uwy 1 ‘ Q,; afu, 1),

where

VG +~w — 1+ 1—u .

0 s ol 1) = = =0 —

It follows easily that

W 41— w0 — o+ w]

os(u, 1) < Grwr(G+1 —wr(d — w1 —u?)’

and since

GA+1—w —(+u

1 —2u
n—1
=2 G+ U—w 0+ u)f <n(G+ 1 —u
i=0
we get
u(l — u)*n B u \"° 1
(u, n) < <
$n < G 1w < ) GrT=w
— 2n
@A D
Therefore,
Y o, ) < 230143 <20 for n 3.
=1
This establishes (3.6).
Let
R0 = ZOWD bt =220

(pn(t)[‘l‘n(t) - ¢’n(t - 277)] ’

An immediate consequence of Lemma 1 and (2.9) is

LEMMA 2. Ifn = 3, there exists a point &, € [0, 7] such that

Ry (" Qm -0 — 1" ¢
1L || = — dt
|, = = (0 e i S 5 i (3.10)

and
P Ru(E,) — 1] < 272, (3.11)
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Thus if the sequence

Qw1
ook o - e
| L 0% == J PR TR Sdt, =34 (3.12)

is o(2"), then

LN =1 L 1—0, as  n— oo,

4. PROOF OF THEOREM |

Formula (3.12) will now be used to prove Theorem 1. Since

t 2
S€C 5 = —- 5 -+ h(t), 0t <,

where A(t) e C[0, =], (3.12) gives us

(277' — f)n g (/[ 1 (27_ [)) £
| Dk cdr T o
1l Zn [() (27_ L t)n ,{ ,)/ T — 1 ’0 (27)’ B [)” e ll(t) (I’[

- A, -+ B, . (4.1)

The second integrand remains bounded and converges a.c. to /(1) as n > co.
Thus by bounded convergence,

. 1 g7 2 4 )
lim B, = — J h(t)dt —= = log — . (4.2)
T Jy T T

"o

Dividing the numerator and denominator of the first integrand in (4.1) by ¢”
and making the change of variables t — x -= 27/t -— 1 we obtain

4 o -1 dx
A oy (4.3)
Assume for the time being that 7 is even, i.e., n - 2m. Then
4 p® ..‘.zm b e ]
Aoy = — ' * -ﬁ~\_», S A
a X ]
Since Ll, = [, and the integrand is even, one gets
o § L @
2m T . o, .\,2,,,,‘ e 1 . .
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Each of these integrals may be evaluated by complex integration as follows.
Let R > 1 and consider the contour proceeding from z == —R to z = R
along the real axis, and then back to z == — R along the upper half of a circle
of radius R centered at the origin. The integrands

e AL S ) v 1,2, m
have only simple poles inside the contour at the points
z, = e"HEF=L /2 r=12..m

and corresponding residues

L 1—2v
Lr w1 2u—l) f2m

2m  2m

Summing and letting R — <o we see that

1
?J_w x| = sin((m/2m)2v — 1))

o0 x2)n—2u l

4.5)

Hence A,,, is a Riemann sum for the divergent integral (1/=) fg csc x dx.
Now cscx — I/x — lj(m — x) is a continuous and hence Riemann
integrable function on [0, 7] and

l—_) dx = 2log % . (4.6)

AT l
’ (CSC X ———
Yo X 7o N

Using (4.4) and (4.5) and replacing the resulting Riemann sum by means of
(4.6) we have

2 2m 2 2
— ) o~ i
Ao me= w2y —1) "= log 7 o(l)
B 4 g 2m 1 1 m 1' ‘ 2 2 '
=Ly T2y e et
2 2 4
= log 2m + — (log — 299 — ym) -+ o(1). 4.7

Here
n

Vo= 3 Ilj — log n, n=—1,2..,

r==1

and y, — v, the Euler—Mascheroni constant. Now observe that the integrand
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of (4.3) is an increasing function of n, and hence A4,., > A, . Thus the
estimate (4.7) is valid for a/l n == 3. Using (4.1) we obtain

A 2 log n -+ 2 (2 log — —+ y) - o(1). (4.8)
T v o /

After considering the remark at the end of the last section, we see that we may
replace | 7, |I* by i} %, || in (4.8). This concludes the proof of Theorem 1.
In concluding the paper, we state without proof a result concerning the

monotonicity of the sequence || £, [, n == 1,2,....
THEOREM 3.
L B =K< Gl <) % <o
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