The Lebesgue Constants for Cardinal Spline Interpolation*

Franklin Richards

Mathematics Research Center, University of Wisconsin, Madison, Wisconsin
Communicated by I. J. Schoenberg

If $\left(y_{v}\right) \in l_{\infty}$, let $\mathscr{L}_{n} y$ be the unique bounded cardinal spline of degree $n-1$ interpolating to y at the integers, i.e.,

$$
\mathscr{L}_{n} y(\nu)=y_{v}, \nu=0, \pm 1, \pm 2 .
$$

The norm of this operator: $\left\|\mathscr{L}_{n}\right\|=\sup \left\|\mathscr{L}_{n} y\right\|_{i} \| y_{i}^{\prime}$ is called a Lebesgue constant. A formula for $\left\|\mathscr{L}_{n}\right\|$ is obtained, and with it we will show that

$$
\mathscr{P}_{n}:=\frac{2}{\pi} \log n+\frac{2}{\pi}\left(2 \log \frac{4}{\pi}+\gamma\right)+o(1) \text { as } n \rightarrow \infty
$$

where γ is the Euler-Mascheroni constant.

1. Introduction

If n is a natural number, let us define the space $\mathscr{S}_{n}=\{S(x)\}$ of bounded cardinal splines of degree $n-1$ to consist of those functions satisfying the following conditions:
(i) $S \in C^{u-2}(-\infty, \infty)$,
(ii) $|S|=\sup _{-\infty<x<\infty}|S(x)|<\infty$,
(iii) $S(x)$ reduces to a polynomial of degree at most $n-1$ on each of the intervals $[\nu+n / 2, \nu+n / 2+1], \nu=0, \pm 1, \pm 2, \ldots$, i.e., $S(x)$ has knots at the integers or half integers if n is, respectively, even or odd.

If $y=\left(y_{\nu}\right)_{\nu=-\infty}^{\infty} \in l_{\infty}$, the space of (real or complex) doubly infinite bounded sequences, then there is a unique element $\mathscr{L}_{n} y \in \mathscr{S}_{n}$ interpolating the given data at the integers, i.e.,

$$
\mathscr{L}_{n} y(\nu)=y_{\nu}, \quad v=0, \pm 1, \pm 2, \ldots
$$

[^0]The operator $\mathscr{L}_{n}: l_{\infty} \rightarrow \mathscr{S}_{n}$ is called the cardinal spline interpolation operator of order n, and its norm

$$
\mathscr{P}_{n:}:=\sup _{y!o=1} \mathscr{L}_{n} y
$$

is referred to as the nth Lebesgue constant for cardinal spline interpolation. These numbers have been investigated previously for low values of n (see [2,6-8]). The purpose of this paper is to examine the asymptotic behavior of the Lebesgue constants as the degree becomes large. More specifically, the following result is obtained.

Theorem 1. Let γ be the Euler-Mascheroni constant. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{\left\|\mathscr{L}_{n}\right\|-\frac{2}{\pi} \log n^{\prime}=\frac{2}{\pi}\left(2 \log \frac{4}{\pi}+\gamma\right)=0.675 \ldots\right. \tag{1.1}
\end{equation*}
$$

It seems of interest to compare this with results obtained for polynomial interpolation operators. Let

$$
\begin{equation*}
\Delta_{n}:-1 \leqslant x_{n}^{n}<x_{n-1}^{n}<\cdots<x_{1}^{n} \leqslant 1, \quad n=1,2, \ldots, \tag{1.2}
\end{equation*}
$$

be a given infinite triangular array, and for each $f \in C[-1,1]$, let $\mathscr{P}_{A_{n}} f$ denote the unique polynomial of degree less than n satisfying

$$
\mathscr{P}_{A_{n}} f\left(x_{\nu}{ }^{n}\right)=f\left(x_{\nu}{ }^{\prime \prime}\right), \quad v=1, \ldots, n
$$

Erdös [1] has shown that there exists a constant c independent of the array (1.2) such that

$$
\begin{equation*}
p_{a_{n}}=(2 \pi) \log n-c \tag{1.3}
\end{equation*}
$$

On the other hand, if

$$
\bar{\Delta}_{n}: x_{\nu}^{n}=\cos \frac{(2 v-1) \pi}{2 n}, \quad v=1,2, \ldots n
$$

are the zeros of the nth Chebyshev polynomial, Rivlin [3] has shown that

$$
\begin{equation*}
\lim _{n \rightarrow}\left\{| | \mathscr{P}_{\bar{n}_{n}} \left\lvert\,-\frac{2}{\pi} \log n_{\}}^{\prime}=\frac{2}{\pi}\left(\log \frac{8}{\pi}+\gamma\right)=0.9625 \ldots\right.\right. \tag{1.4}
\end{equation*}
$$

Hence we make the surprising observation that "near-best" polynomial interpolation Lebesgue constants display nearly the same asymptotic behavior as cardinal spline interpolation Lebesgue constants.

2. A Formula for $\left\|\mathscr{L}_{n}\right\|$.

We now discuss certain functions and concepts that will play a major role in our discussion. Define

$$
\begin{equation*}
\psi_{n}(t)=\left(\frac{2 \sin t / 2}{t}\right)^{n} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{n}(t)=\sum_{j=-\infty}^{\infty} \psi_{n}(t+2 \pi j) . \tag{2.2}
\end{equation*}
$$

Then the Fourier transform of $\psi_{n}(t) / \varphi_{n}(t)$ is

$$
\begin{equation*}
L_{n}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\psi_{n}(t)}{p_{n}(t)} e^{i t x} d t \tag{2.3}
\end{equation*}
$$

which is characterized by the properties (see [4])
(i) $L_{n} \in \mathscr{S}_{n}$,
(ii) $L_{n}(\nu)= \begin{cases}1, & \nu=0, \\ 0, & v= \pm 1, \pm 2, \ldots,\end{cases}$
(iii) $\left|L_{n}(x)\right| \rightarrow 0$ exponentially as $|x| \rightarrow \infty$,
i.e., $L_{n}(x)$ is the "fundamental" cardinal spline of degree $n-1$. Thus

$$
\begin{equation*}
\left(\mathscr{L}_{n} y\right)(x)=\sum_{r=-\infty}^{\infty} y_{v} L_{n}(x-\nu) \quad-\infty<x<\infty . \tag{2.4}
\end{equation*}
$$

Since

$$
\left|\mathscr{L}_{n} y(x)\right| \leqslant \|\left. y\right|_{\infty} \sum_{v=-\infty}^{\infty}\left|L_{n}(x-v)\right|
$$

and $\sum^{\infty},\left|L_{n}(x-\nu)\right|$ has period 1 , it is clear that

$$
\mathscr{R}_{n} u \leqslant \max _{v=x \leqslant 1} \sum_{r=-\infty}^{m}\left|L_{n}(x-v)\right|
$$

On the other hand, if we assume $n \geqslant 3$ and consider the sequence
$\tilde{y}_{v}=\operatorname{sgn} L_{n}(x-v)=\left\{\begin{array}{ll}(-1)^{v i}, & \nu=1,2, \ldots, \\ (-1)^{\prime \prime}, & v=0, \cdots 1,-2, \ldots,\end{array} \quad 0<x<1\right.$.
then

$$
\begin{equation*}
\|\left.\mathscr{L}_{n} \tilde{y}\right|^{\prime}=\sup _{-\infty<x \leq \infty} \sum_{v=-\infty}^{\infty} \tilde{v}_{v} L_{n}(x-\nu)=\max _{0 \leqslant x \leqslant 1} \sum_{v=-\infty}^{\infty} \mid L_{n}(x-\nu) \tag{2.6}
\end{equation*}
$$

and the maximum occurs at $x=\frac{1}{2}$ (see [2]). Thus

$$
\begin{equation*}
\left|\mathscr{L}_{n}\right|=\sum_{v=-}^{\infty} \grave{y}_{v} L_{n}\left(\frac{1}{2}-v\right) \tag{2.7}
\end{equation*}
$$

The following theorem gives a more useful formula for $i f \mathscr{L}_{n}$.
Theorem 2. Define the function,

$$
\begin{equation*}
\gamma_{n}(t)=\sum_{j}^{x}(-1)^{j} \psi_{n}(t+2 \pi j) \tag{2.8}
\end{equation*}
$$

Then if $n \geqslant 3$, we have

$$
\begin{equation*}
\mathscr{L}_{n}:=\frac{1}{\pi} \int_{0}^{\pi} \frac{\gamma_{n}(t)}{\varphi_{n}(t)} \sec \frac{t}{2} d t \tag{2.9}
\end{equation*}
$$

Proof. By (2.3),

$$
\begin{equation*}
\left.\sum_{\nu=-N: 1}^{N} \hat{y}_{v} L_{n}\left(\frac{1}{2}-\nu\right)=\frac{1}{2 \pi} \int_{-\infty} \left\lvert\, \frac{\psi_{n}(t)}{\varphi_{n}(t)} e^{i t / 2} \sum_{v=-N+1}^{N} \hat{y}_{\nu} e^{-i t v}\right.\right\} d t \tag{2.10}
\end{equation*}
$$

But

$$
\sum_{v=-N+1}^{N} \tilde{y}_{v} e^{-i i v}=-\sum_{v=1}^{N}\left(-e^{-i t}\right)^{v}+\sum_{v==}^{N-1}\left(-e^{i t}\right)^{v}
$$

are just geometric series. An easy calculation yields

$$
\begin{equation*}
\sum_{v=-N=1}^{N} \tilde{y}_{v} e^{-i t \nu}=\frac{2}{1+e^{2 t}}\left(1+(-1)^{N+1} \cos N t\right) \tag{2.11}
\end{equation*}
$$

Plugging into (2.10) we obtain

$$
\begin{align*}
& \sum_{t=-N+1}^{N} \tilde{y}_{v} L_{n}\left(\frac{1}{2}-\nu\right) \\
& \quad=\frac{1}{2 \pi} \int^{\infty} \frac{\psi_{n}(t)}{\varphi_{n}(t)} \sec \frac{t}{2}\left(1+(-1)^{N+1} \cos N t\right) d t \\
& \quad=\frac{1}{2 \pi} \sum_{j=-\infty}^{\infty} \int_{2 \pi j-\pi}^{2 \pi j+\pi} \frac{\psi_{n}(t)}{\varphi_{n}(t)} \sec \frac{t}{2}\left(1+(-1)^{N+1} \cos N t\right) d t \\
& \quad=\frac{1}{2 \pi} \sum_{j=-\infty}^{\infty} \int_{-\pi}^{\pi} \frac{(-1)^{j} \psi_{n}(t-2 \pi j)}{\varphi_{n}(t)} \sec \frac{t}{2}\left(1+(-1)^{N+1} \cos N t\right) d t \tag{2.12}
\end{align*}
$$

by the periodicity of $\varphi_{n}(t)$ and the fact that $\sec ((t+2 \pi j) / 2)=(-1)^{j} \sec t / 2$. But since $\gamma_{n}(t)=\sum_{j=-\infty}^{\infty}(-1)^{j} \psi_{n}(t+2 \pi j)$ converges uniformly and the resulting integrand is an even function, it follows that

$$
\begin{align*}
& \sum_{-N-N \rightarrow 1}^{N} \tilde{y}_{\nu} L_{n}\left(\frac{1}{2}-\nu\right) \\
& \quad=\frac{1}{\pi} \int_{0}^{\pi} \frac{\gamma_{n}(t)}{\varphi_{n}(t)} \sec \frac{t}{2} d t+\frac{(-1)^{N-1}}{2 \pi} \int_{-\pi}^{\pi} \frac{\gamma_{n}(t)}{\varphi_{n}(t)} \sec \frac{t}{2} \cos N t d t \tag{2.13}
\end{align*}
$$

It will be shown in the next section that $\left[\gamma_{n}(t) / \varphi_{n}(t)\right] \sec t / 2$ is continuous on $[\cdots \pi, \pi]$. Hence letting $N \rightarrow \infty$ in (2.13), the second term on the right will $\rightarrow 0$ by the Riemann-Lebesgue lemma, and the term on the left will $\rightarrow\left\|\mathscr{L}_{n}\right\|$ by (2.7). This proves (2.9).

$$
\text { 3. The Functions } \varphi_{n}(t) \text { and } \gamma_{n}(t)
$$

In order to use formula (2.9) to prove Theorem 1, it will be necessary to simplify the integrand. Thus we must examine in more detail the functions $\varphi_{n}(t)$ and $\gamma_{n}(t)$. Consider the functions

$$
\begin{equation*}
\rho_{n}(t)=\left(2 \sin \frac{t}{2}\right)^{n} \sum_{j=-\infty}^{\infty} \frac{1}{(t+2 \pi j)^{n}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{n}(t)=\left(2 \sin \frac{t}{2}\right)^{n} \sum_{j=-\infty}^{\infty} \frac{(-1)^{j}}{(t+2 \pi j)^{n}} . \tag{3.2}
\end{equation*}
$$

Then

$$
\varphi_{n}(t)=\left(2 \sin \frac{t}{2}\right)^{n} \sum_{j=-\infty}^{\infty} \frac{(-1)^{n}}{(t+2 \pi j)^{n}}=\begin{align*}
& \rho_{n}(t) n \text { even }, \tag{3.3}\\
& \sigma_{n}(t) n \text { odd },
\end{align*}
$$

and

$$
\gamma_{n}(t)=\left(2 \sin \frac{t}{2}\right)^{n} \sum_{j=-\infty}^{\infty} \frac{(-1)^{j(n+1)}}{(t+2 \pi j)^{n}}=\left\{\begin{array}{l}
\sigma_{n}(t) n \text { even }, \tag{3.4}\\
\rho_{n}(t) n \text { odd }
\end{array}\right.
$$

Schoenberg $[4,5]$ has shown that $\rho_{n}(t)$ and $\sigma_{n}(t)$ are trigonometric polynomials in the variable $t / 2$ and that $\varphi_{n}(t)>0,-\infty<t<\infty$. From (3.4) it follows that $\gamma_{n}(t)>0,-\pi<t<\pi$, and $\gamma_{n}(\pi)=\gamma_{n}(-\pi)=0$. Thus $\left[\gamma_{n}(t) / \varphi_{n}(t)\right] \sec t / 2$ is indeed a continuous, nonnegative function on $[-\pi, \pi]$, as claimed in $\S 2$.

The following lemma states that it is "all right" to replace the functions $\gamma_{n}(t)$ and $\varphi_{n}(t)$ in (2.9) by their "dominant" terms.

Lemma 1. If $n \geqslant 3$ and $0<t<\pi$, then

$$
\begin{equation*}
\left|\frac{\psi_{n}(t)}{\psi_{n}(t)+\psi_{n}(t-2 \pi)}-1\right|<3^{-i \cdots 1} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\gamma_{n}(t)}{\psi_{n}(t)-\psi_{n}(t-2 \pi)}-1\right|<2^{-n} . \tag{3.6}
\end{equation*}
$$

Proof. Consider the functions

$$
\begin{align*}
\tilde{\varphi}_{n}(u) & =\sum_{j=-\infty}^{\infty} \frac{(-1)^{j n}}{(u+j)^{n}} \\
& =\frac{1}{u^{n}}+\frac{1}{(1-u)^{n}}+\sum_{j=1}^{\infty}(-1)^{j n}\left[\frac{1}{(j+u)^{n}}+\frac{1}{(j+1-u)^{n}}\right] \tag{3.7}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{\gamma}_{n}(u) & =\sum_{j=-\infty}^{\infty} \frac{(-1)^{j(n+1)}}{(u+j)^{n}} \\
& =\frac{1}{u^{n}}-\frac{1}{(1-u)^{n}}+\sum_{j=1}^{\infty}(-1)^{j(n+1)}\left[\frac{1}{(j+u)^{n}}-\frac{1}{(j+1-u)^{n}}\right] \tag{3.8}
\end{align*}
$$

By (3.3) and (3.4), it is seen that

$$
\sup _{0<t<\pi}\left|\frac{\varphi_{n}(t)}{\psi_{n}(t)+\psi_{n}(t-2 \pi)}-1\right|=\sup _{0<u<\frac{1}{2}}\left|\frac{\tilde{\varphi}_{n}(u)}{1 / u^{n}+1 /(1-u)^{n}}-1\right|
$$

and

$$
\sup _{0<t<\pi}\left|\frac{\gamma_{n}(t)}{\psi_{n}(t)-\psi_{n}(t-2 \pi)}-1\right|=\sup _{0<u<1}\left|\frac{\tilde{\gamma}_{n}(u)}{1 / u^{n}-1 /(1-u)^{n}}-1\right| .
$$

The fact that $0<u<\frac{1}{2}$ will be used repeatedly. We compute

$$
\begin{aligned}
\left|\frac{\tilde{\varphi}_{n}(u)}{1 / u^{n}-\left(1 /(1-u)^{n}\right)}-1\right| & \leqslant \frac{\sum_{j=1}^{\infty}\left[1 /(j+u)^{n}+1 /(j+1-u)^{n}\right]}{1 / u^{n}+1 /(1-u)^{n}} \\
& \leqslant \frac{\sum_{j=1}^{\infty}(u /(j+u))^{n}+(u /(j+1-u))^{n}}{1+(u /(1-u))^{n}} \\
& \leqslant 2 \sum_{j=1}^{\infty}(2 j+1)^{-n} \leqslant 3^{-n+1} \text { for } n \geqslant 3 .
\end{aligned}
$$

Thus (3.5) is proved. From (3.8) we have

$$
\left|\frac{\tilde{\gamma}_{n}(u)}{1 / u^{n}-1 /(1-u)^{n}}-1\right| \leqslant \sum_{j=1}^{\infty} \alpha_{j}(u, n)
$$

where

$$
0 \leqslant \alpha_{j}(u, n)=\frac{1 /(j+u)^{n}-1 /(j+1-u)^{n}}{1 / u^{n}-1 /(1-u)^{n}}
$$

It follows easily that

$$
\alpha_{j}(u, n) \leqslant \frac{u^{n}\left[(j+1-u)^{n}-(j+u)^{n}\right]}{(j+u)^{n}(j+1-u)^{n}\left(1-u^{2} /(1-u)^{2}\right)},
$$

and since

$$
\begin{aligned}
& \frac{(j+1-u)^{n}-(j+u)^{n}}{1-2 u} \\
& \quad=\sum_{i=0}^{n-1}(j+1-u)^{n-1-i}(j+u)^{i} \leqslant n(j+1-u)^{n-1}
\end{aligned}
$$

we get

$$
\begin{aligned}
\alpha_{j}(u, n) & \leqslant \frac{u^{n}(1-u)^{2} n}{(j+u)^{n}(j+1-u)} \leqslant n\left(\frac{u}{j+u}\right)^{n} \frac{1}{(j+1-u)} \\
& \leqslant \frac{2 n}{(2 j+1)^{n+1}}
\end{aligned}
$$

Therefore,

$$
\sum_{j=1}^{\infty} \alpha_{j}(u, n) \leqslant 2 n \cdot 3^{-n-1}+3^{-n}<2^{-n}, \quad \text { for } \quad n \geqslant 3
$$

This establishes (3.6).
Let

$$
\begin{equation*}
R_{n}(t)=\frac{\gamma_{n}(t)\left[\psi_{n}(t)+\psi_{n}(t-2 \pi)\right]}{\varphi_{n}(t)\left[\psi_{n}(t)-\psi_{n}(t-2 \pi)\right]}, \quad 0<t<\pi \tag{3.9}
\end{equation*}
$$

An immediate consequence of Lemma 1 and (2.9) is
Lemma 2. If $n \geqslant 3$, there exists a point $\xi_{n} \in[0, \pi]$ such that

$$
\begin{equation*}
\left\|\mathscr{L}_{n}\right\|=\frac{R_{n}\left(\xi_{n}\right)}{\pi} \int_{0}^{\pi} \frac{(2 \pi-t)^{n}-t^{n}}{(2 \pi-t)^{n}+t^{n}} \sec \frac{t}{2} d t \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{n}\left(\xi_{n}\right)-1\right|<2^{-n \div 2} \tag{3.11}
\end{equation*}
$$

Thus if the sequence

$$
\begin{equation*}
\mid \mathscr{L}_{n} \|^{*}=\frac{1}{\pi} \int_{0}^{\pi} \frac{(2 \pi-t)^{n}-t^{n}}{(2 \pi--t)^{n}-t^{n}} \sec \frac{t}{2} d t, \quad n==3,4, \ldots, \tag{3.12}
\end{equation*}
$$

is $o\left(2^{n}\right)$, then

$$
\left|\mathscr{L}_{n}\left\|^{*}-\right\| \mathscr{L}_{n}\right| \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty
$$

4. Proof of Theorem 1

Formula (3.12) will now be used to prove Theorem 1. Since

$$
\sec \frac{t}{2}-\frac{2}{\pi-t}+h(t), \quad 0<t<\pi
$$

where $h(t) \in C[0, \pi]$, (3.12) gives us

$$
\begin{align*}
\left\|\mathscr{L}_{n}\right\|^{*} & =\frac{2}{\pi} \int_{0}^{\pi} \frac{(2 \pi-t)^{n}-t^{n}}{(2 \pi-t)^{n}-t^{n}} \frac{d t}{\pi-t}+\frac{1}{\pi} \int_{0}^{\pi} \frac{(2 \pi-t)^{n}-t^{n}}{(2 \pi-t)^{n}+t^{n}} h(t) d t \\
& =A_{n}-B_{n} . \tag{4.1}
\end{align*}
$$

The second integrand remains bounded and converges a.e. to $h(t)$ as $n \rightarrow \infty$. Thus by bounded convergence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} B_{n}=\frac{1}{\pi} \int_{0}^{\pi} h(t) d t=\frac{2}{\pi} \log \frac{4}{\pi} . \tag{4.2}
\end{equation*}
$$

Dividing the numerator and denominator of the first integrand in (4.1) by t^{n} and making the change of variables $t \rightarrow x \rightarrow 2 \pi / t \cdots 1$ we obtain

$$
\begin{equation*}
A_{n}=\frac{4}{\pi} \int_{1}^{\infty} \frac{\left(x^{n}-1\right)}{\left(x^{n}+1\right)} \frac{d x}{\left(x^{2}-1\right)} . \tag{4.3}
\end{equation*}
$$

Assume for the time being that n is even, i.e., $n=2 m$. Then

$$
A_{2 m}=\frac{4}{\pi} \int_{1}^{\infty} \frac{x^{2 m-2}-x^{2 m-4}+\cdots+1}{x^{2 m}} d x
$$

Since $\int_{0}^{1}=\int_{1}^{\alpha}$ and the integrand is even, one gets

$$
\begin{equation*}
A_{2 m}=\sum_{v=1}^{m} \frac{1}{\pi} \int_{-x}^{\infty} \frac{x^{2 m}-2}{x^{2 m}-1} d x . \tag{4.4}
\end{equation*}
$$

Each of these integrals may be evaluated by complex integration as follows. Let $R>1$ and consider the contour proceeding from $z=-R$ to $z=R$ along the real axis, and then back to $z=-R$ along the upper half of a circle of radius R centered at the origin. The integrands

$$
z^{2 m-2 v}\left(z^{2 m}+1\right), \quad v \ldots 1,2, \ldots, m
$$

have only simple poles inside the contour at the points

$$
z_{r}=e^{\pi i(2 r-1) / 2, m}, \quad r=1,2, \ldots, m
$$

and corresponding residues

$$
\frac{z_{r}^{1-2 v}}{2 m}=\frac{1}{2 m} e^{-\pi i(2 r-1)(2 \nu-1) / 2 m} .
$$

Summing and letting $R \rightarrow \infty$ we see that

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x^{2 m-2 \nu}}{x^{2 m}+1} d x=\frac{1}{m \sin ((\pi / 2 m)(2 \nu-1))} \tag{4.5}
\end{equation*}
$$

Hence $A_{2 m}$ is a Riemann sum for the divergent integral $(1 / \pi) \int_{0}^{\pi} \csc x d x$.
Now $\csc x-1 / x-1 /(\pi-x)$ is a continuous and hence Riemann integrable function on $[0, \pi]$ and

$$
\begin{equation*}
\int_{0}^{\pi}\left(\csc x-\frac{1}{x}-\frac{1}{\pi-x}\right) d x=2 \log \frac{2}{\pi} . \tag{4.6}
\end{equation*}
$$

Using (4.4) and (4.5) and replacing the resulting Riemann sum by means of (4.6) we have

$$
\begin{align*}
A_{2 m} & =\frac{2}{m} \sum_{v=1}^{m} \frac{2 m}{\pi(2 v-1)}+\frac{2}{\pi} \log \frac{2}{\pi}+o(1) \\
& =\frac{4}{\pi}\left\{\sum_{m=1}^{2 m} \frac{1}{v}-\frac{1}{2} \sum_{v=1}^{m} \frac{1}{v}\right\}+\frac{2}{\pi} \log \frac{2}{\pi} \div o(1) \\
& =\frac{2}{\pi} \log 2 m+\frac{2}{\pi}\left(\log \frac{4}{\pi}+2 \gamma_{2 m}-\gamma_{m}\right)+o(1) \tag{4.7}
\end{align*}
$$

Here

$$
\gamma_{n}=\sum_{v=1}^{n} \frac{1}{v}-\log n, \quad n=1,2, \ldots,
$$

and $\gamma_{n} \rightarrow \gamma$, the Euler-Mascheroni constant. Now observe that the integrand
of (4.3) is an increasing function of n, and hence $A_{n+1}>A_{n}$. Thus the estimate (4.7) is valid for all $n \geqslant 3$. Using (4.1) we obtain

$$
\begin{equation*}
\mathscr{L}_{n} *=\frac{2}{\pi} \log n+\frac{2}{\pi}\left(2 \log \frac{4}{\pi}+\gamma\right)-o(1) . \tag{4.8}
\end{equation*}
$$

After considering the remark at the end of the last section, we see that we may replace $\mid \mathscr{L}_{n} \|^{*}$ by $\left\|\mathscr{L}_{n}\right\|$ in (4.8). This concludes the proof of Theorem 1.

In concluding the paper, we state without proof a result concerning the monotonicity of the sequence $\left\|\mathscr{L}_{n}\right\|, n=1,2, \ldots$.

Theorem 3.

$$
1=\left|\mathscr{L}_{1}=\left\|\mathscr{L}_{2}\right\|<\mathscr{L}_{3} \|<\left|\mathscr{L}_{4}\right|<\cdots .\right.
$$

Acknowledgments

The author gratefully acknowledges many helpful discussions with Professors Carl de Boor and Martin Marsden which significantly affected the final form of this paper.

References

1. P. Erdös, Problems and results on the theory of interpolation II, Acta Math. Acad. Sci. Hung. 12 (1961), 235-244.
2. F. Richards, Best bounds for the uniform periodic spline interpolation operator, J. Approximation Theory 7 (1973), 302-317.
3. T. J. Riviln, The Lebesgue constants for polynomial interpolation, IBM Research Report RC 4165, Yorktown Heights, NY, 1972.
4. I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math. 4 (1946), 45-99, 112-141.
5. I. J. Schoenberg, Cardinal interpolation and spline functions, J. Approximation Theory 2 (1969), 167-206.
6. F. Schurfr, A note on interpolating periodic quintic splines with equally spaced nodes, J. Approximation Theory 1 (1968), 493-500.
7. F. Schurer, On interpolating periodic quintic spline functions with equally spaced nodes, Tech. Univ. Eindhoven Report 69-WSK-01, Eindhoven, The Netherlands, 1969.
8. F. Schurer and E. W. Cheney, On interpolating cubic splines with equally spaced nodes, Indag. Math. 30 (1968), 517-524.

[^0]: * Sponsored by the United States Army under Contract No. DA-31-124-ARO-D-462.

